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On the convective nature of bar instability
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Bar instability is recognized as the fundamental mechanism underlying the formation
of large-scale forms of rivers. We show that the nature of such instability is convective
rather than absolute. Such a result is obtained by revisiting the linear stability analysis
of open-channel uniform flow over a cohesionless channel of Colombini et al. (1987)
and using the Briggs (1964) criterion to distinguish between the convectively and
absolutely unstable temporally asymptotic response to an initial boundary-value
perturbation of bed topography. Examining the branch-point singularities of the
dispersion relation, which can be determined in closed form, we show that all
the existing branch-point singularities characterized by positive bar growth rate ωi ,
involve spatial branches of the dispersion relation which, for large positive values of
ωi , lie in the same half λ-plane, λ denoting the complex bar wavenumber. Hence, the
nature of instability is convective and remains so for any value of the aspect ratio,
the controlling parameter of the basic instability, as well as for any lateral mode
investigated. The latter analytical findings are confirmed by numerical solutions of
the fully nonlinear problem. In fact, starting from either a randomly distributed or a
localized spatial perturbation of bed topography, groups of bars are found to grow and
migrate downstream leaving the source area undisturbed. The actual bars observed
in laboratory experiments arise from the spatial-temporal growth of some persistent
initial perturbation. The nonlinear development of such perturbations is shown to
lead to a periodic pattern with amplitude independent of the amplitude of the initial
perturbation. Bars are also found to lengthen and slow down as they grow from the
linear into the nonlinear regime, in agreement with experimental observations. The
distance from the initial cross-section at which equilibrium is achieved depends on
the initial amplitude of the perturbation, a finding which calls for a revisitation of
classical laboratory observations reported in the literature.

1. Introduction
Bars are large-scale bedforms which are observed in rivers. Following Seminara &

Tubino (1989a), it is convenient to distinguish between two classes of bar, respectively
called free and forced.

Free bars arise from an instability of the cohesionless bottom of a channel, whereby
a small wavy perturbation of bottom elevation grows in time. The outcome of such an
instability is the development of alternating sequences of riffles and pools separated
by diagonal fronts, which may occur either in single rows (alternate bars, figure 1a)
or in multiple rows (multiple row bars, figure 1b). Each of the units composing
such patterns is characterized by a lateral scale equal to an integral fraction of
the channel width, a longitudinal scale of the order of a few times (say six times) the
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(a) (b)

Figure 1. (a) Alternate bars in a reach of the Elbow river (courtesy of G. Parker);
(b) multiple bars in the Waimakariri River, New Zealand (pictures taken by B. Federici).

lateral scale, amplitude of the order of the average flow depth and slow downstream
migration. An extensive literature on bar formation has grown starting from the
seminal work of Callander (1969). It is now fairly well established that the formation
of bars can be explained by a classical normal mode stability analysis performed
on the system of conservation equations governing the hydrodynamics and sediment
transport in channels with a cohesionless bed (e.g. Colombini, Seminara & Tubino
1987). Alternate bars are then described by the first (lateral) Fourier mode while
multiple row bars are associated with higher-order lateral modes. The inception of
instability is found to be controlled by a delicate balance between the destabilizing
contribution associated with the secondary flow and the stabilizing contribution
mainly associated with the effect of gravity on sediment transport. The former
turns out to be crucially dependent on the longitudinal bar wavenumber, the latter
increases as the lateral slope of the bed increases. Hence, a given small-amplitude
bottom perturbation is increasingly stabilized as the aspect ratio of the channel β

decreases; in other words, very narrow channels do not allow for bar formation, fairly
narrow channels display the development of alternate bars while very wide channels
lead to the formation of multiple row bars. The aspect ratio of the channel is the
crucial dimensionless parameter for the instability. However, some weaker role is also
played by the Shields parameter τ∗, a dimensionless form of the average bottom stress
(see equation (2.1)) which is known to control the intensity of sediment transport,
and by the relative roughness parameter ds which controls frictional forces. For given
Shields stress and relative roughness, linear stability (e.g. Colombini et al. 1987)
predicts a sequence of increasing critical values βcm above which small-amplitude
bar perturbations characterized by m rows are amplified. For m = 1, bars give rise
to a weakly meandering pattern of the thalweg, whereas for m � 2, a submerged
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braiding pattern develops. For this reason, it has long been speculated (Leopold &
Wolman 1957) that alternate bars would be precursors of meanders, while multiple
row bars would ultimately develop into a braided river.

Forced bars arise from forcing effects, typically channel curvature, variations
of channel width or non-uniform initial conditions. In particular, in a meandering
channel, the periodic variation of channel curvature drives a secondary flow which
leads to the establishment of a periodic sequence of regions of depositions at the
inner bends and scours at the outer bends which have a structure similar to that of
alternate bars except for their non-migrating character. Forced bars have also been
intensely investigated, in particular in the context of theories of meander formation
(Ikeda & Parker 1989). In particular, the bend theory of river meanders (Ikeda, Parker
& Sawai 1981; Blondeaux & Seminara 1985), suggests that planimetric perturbations
of the channel axis characterized by wavenumbers smaller than some threshold value
do amplify, leading to meander growth. The speculation of Leopold & Wolman
(1957), namely the interpretation of alternate bars as precursors of meanders, would
then require that planimetric perturbations of the channel axis with wavenumber
equal to that of alternate bars should indeed be found to be planimetrically unstable.
Unfortunately, this is not the case as the bar wavenumber typically exceeds the
threshold value of meander wavenumber above which planimetric perturbations are
found to be damped; such a finding seems to contradict the idea that alternate bars
are indeed precursors of meanders.

However, laboratory observations (Federici 1999; Federici & Paola 2003) of the
development of river patterns starting from a straight channel initially cut in a
uniform cohesionless floodplain (figure 2a) do point at the important role that the
initial formation of alternate bars may play. They appear to trigger small periodic
width variations of the channel (figure 2b) which stop bar migration and then lead to
bank erosion and channel meandering (figure 2c), though the subsequent development
of the pattern in a cohesionless environment where bank erosion occurs on the same
time scale of bottom erosion, invariably leads eventually to a braided configuration
(figure 2d).

A deeper understanding of the nature of the process of free bar formation is then
called for in order to make further progress in the understanding of river meandering
and river braiding.

A striking feature of the bar-meandering patterns, typically observed in laboratory
investigations of the type performed by Federici (1999), is the spatial propagation of
the observed feature. This observation points to the need to ascertain the nature of the
bar instability mechanism. In fact, it is well known that instability is described as
convective provided an initial small perturbation localized in space is convected
downstream leaving, as time tends to infinity, the flow domain unperturbed. On
the contrary, instability is described as absolute whenever the initial small localized
perturbation spreads both in the upstream and downstream directions as time grows,
affecting eventually the whole flow domain. Such a fundamental distinction was
originally proposed in the field of plasma physics by Briggs (1964) and Bers (1975,
1983) and has since been applied and developed in hydrodynamic stability by several
authors (see the review of Huerre & Monkewitz 1990). Temporal stability analyses
of bar formation of the kind performed by most investigators (e.g. Callander 1969;
Engelund & Skovgaard 1973; Colombini et al. 1987, hereinafter referred to as CST)
consider perturbations which amplify in time, starting from some initial spatially
periodic perturbation, i.e. they assume that the perturbation wavenumber λ is real
while its frequency ω is complex. Such analyses allow us to distinguish between stable
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(a)                                                                                       (b)

(c)                                                                                       (d )

Figure 2. Laboratory observations of the development of river patterns: (a) t =0: a straight
channel is initially cut in a cohesionless floodplain; (b) t = 5 min: alternate bars form;
(c) t = 20 min: small periodic width variations of the channel, triggered by the alternate
bars, stop bar migration and lead to bank erosion and channel meandering; (d) t =20h: a
braided pattern.

configurations (all λ decay in time) and unstable systems (some λ are amplified). When
the nature of the instability is convective a spatial stability analysis is applicable,
considering perturbations which evolve in space, starting from some initial temporal
distribution, i.e. assuming that the perturbation wavenumber is complex and the
perturbation frequency is real.

In order to ascertain the nature of the instability, the response of the system to
impulsive forcing must be investigated. As first discussed by Briggs (1964), absolute
instability is associated with the occurrence of branch-point singularities in the dis-
persion relationship, i.e. values of ω and λ (both complex) where two or more spatial
branches of the dispersion relationship merge (a spatial branch being defined as the
locus of solutions of the dispersion relationship associated with any given value of
the imaginary part of ω, in the following denoted by ωi). Branch-point singularities
(ωo, λo) are characterized by vanishing values of the longitudinal group velocity
[∂ω/∂λ]ωo,λo

. More precisely, in order for the instability to be absolute, the perturbation
growth rate ωi at the branch point must be positive; furthermore, as we move from
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the singularity, increasing the value of ωi , at least two of the spatial branches of the
dispersion relationship that merge in the singularity must lie in distinct half λ-planes
for sufficiently large values of ωi .

Applying such a criterion to the case of bar instability is fairly straightforward as
the dispersion relationship is derived in closed form for any given transverse Fourier
mode m, identifying the number of rows characterizing the bar perturbation. As
discussed in the paper, it turns out that, at a linear level, bar instability is invariably
convective.

Such findings can be substantiated at a nonlinear level by performing numerical
simulations on the fully nonlinear equations governing the morphodynamical problem.
More precisely, the response of flow and bed topography to either randomly
distributed or localized spatial initial perturbations is shown to give rise to the growth
of wave groups which migrate downstream leaving the flow domain unperturbed.

The rest of the paper will proceed as follows. In the next section, we briefly recall the
mathematical formulation of the problem of morphodynamics. In § 3, we summarize
the classical results of linear stability of uniform flow and bed topography in straight
cohesionless channels and prove the convective nature of the instability based on
the properties of branch singularities of the dispersion relationship. Section 4 is
devoted to describe some numerical simulations of the fully nonlinear problem which
substantiate the theoretical findings. Having ascertained the convective nature of the
instability, some questions concerning the properties of the spatial development of
free bars arise. In § 5, we provide some answers to them through the results of a
series of suitable numerical experiments. Finally, some concluding remarks complete
the paper.

2. Formulation of the problem
The mechanical system under investigation is an incompressible fluid, flowing in a

wide open channel with an erodible cohesionless bottom and non-erodible banks. Flow
is turbulent and sufficiently intense to entrain sediments through the bed interface.
Hence, having defined the dimensionless Shields stress τ∗ (denoted by θ in CST) in
the form:

τ∗ =
u2

τ

(s − 1)gd
, (2.1)

with uτ the local value of the friction velocity, s the relative density of sediments,
g the acceleration due to gravity and d the uniform grain size, we assume that τ∗
exceeds everywhere its critical value τ∗c associated with the threshold of motion. In
fact, it is well established since the early work of Shields (1936) that the entrainment
of sediment particles lying on a cohesionless bed statistically vanishes for values of
τ∗ smaller than τ∗c, a quantity found to depend on the particle Reynolds number Rp ,
defined as:

Rp =

√
(s − 1)gd3

ν
. (2.2)

We also assume that Shields stress does not exceed a second threshold value τ∗s(Rp),
below which particle motion occurs in the form of saltation (or through rolling and
sliding) within a layer close to the bed interface of typical thickness of the order of
2d–3d . Such a mode of transport is called bedload; under these conditions particles
are not entrained in suspension, i.e. their motion does not extend to the bulk of
the flow. Such restriction allows for a simpler treatment of the stability problem,
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but is by no means essential and could be readily removed (see for instance Repetto
Tubino & Zolezzi 1999; Seminara & Tubino 2001). The problem of bar formation can
then be formulated taking advantage of the fact that bars have typical wavelengths
of the order of a few channel widths, a feature which suggests that we can safely
employ the shallow-water equations to describe the hydrodynamics except, possibly,
close to the relatively sharp oblique bar fronts which develop in the finite-amplitude
regime. Recalling that the evolution of the bed interface resulting from the continuous
process of entrainment and distrainment of bedload particles is governed by the two-
dimensional form of Exner’s (1925) equation, we end up with the following differential
problem (CST):

εU,t +UU,s + V U,n + H,s +β
τs

D
= 0, (2.3a)

εV,t + UV,s +V V,n + H,n + β
τn

D
= 0, (2.3b)

εD,t + (UD),s + (V D),n = 0, (2.3c)(
F 2

o H − D
)
,t + Qs,s + Qn,n = 0. (2.3d)

In (2.3a)–(2.3d) we have employed the following notations: s and n are longitudinal
and lateral Cartesian coordinates, respectively, with s aligned with channel axis;
U and V are longitudinal and lateral components of the depth-averaged velocity,
respectively; H and D are free-surface elevation and flow depth, respectively; τs and
τn are longitudinal and lateral components of the bottom stress, respectively; Qs

and Qn are longitudinal and lateral components of the depth averaged sediment
flux, respectively; t is time. Note that dimensional quantities (denoted below by a
circumflex) have been made dimensionless employing the following scales:

(s, n) = (ŝ, n̂)/B, (U, V ) = (Û , V̂ )/Uo, (2.4a)(
F 2

o H, D
)

= (Ĥ , D̂)/Do, t = t̂/[B/(εUo)], (2.4b)

(τs, τn) = (τ̂s , τ̂n)
/
ρU 2

o , (Qs, Qn) = (Q̂s, Q̂n)/
√

(s − 1)gd3 (2.4c)

where B is the half-width of the channel, Uo and Do are average flow speed and flow
depth associated with the uniform flow of the given flow discharge in a channel with
the given constant slope S, while ε is the small ratio between the hydrodynamic and
morphodynamic time scales, which reads:

ε =

√
(s − 1)gd3

(1 − p)DoUo

. (2.5)

Here, p is porosity of the granular medium, a quantity which is typically about 0.4,
and s is the ratio between sediment and water density. Note that the parameter ε

coincides with the Qo parameter defined by (6a) of CST. It attains values ranging
typically about 10−3–10−4, hence we can safely ignore unsteady effects driven by the
bed evolution in the hydrodynamic equations.

Finally, two dimensionless parameters arise, namely the aspect ratio β and the
Froude number Fo of the uniform reference flow, which read:

β =
B

Do

, F 2
o =

U 2
o

gDo

. (2.6)

Note that the aspect ratio β is the main controlling parameter of bar instability.
Progress with the above formulation requires that the governing equations (2.3a)–

(2.3d) be supplemented with closure relationships for bottom stress and sediment flux.
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Following the classical closure also employed in CST, we write:

τ = (τs, τn) = C(U, V )
√

U 2 + V 2, (2.7)

with C the friction coefficient which, for the case of a plane undisturbed bed, may be
given the classical logarithmic form:

C =

[
6 + 2.5 ln

(
D

2.5ds

)]−2

, (2.8)

where ds is the relative roughness (d/Do). Essentially, using the latter scheme we
are modelling frictional effects as driven by a slowly varying sequence of locally
and instantaneously uniform flows, an assumption justified by the spatial scale of
bars largely exceeding the local flow depths and by the extremely slow temporal
development of bars measured by the small parameter ε (see equation (2.5)).

Closure for the bedload flux requires the provision of relationships able to quantify
both intensity and direction of sediment transport. For uniform plane turbulent flows
on cohesionless beds, it is fairly well established that the average bedload motion is
aligned with the average flow and its intensity is a monotonically increasing function
of the excess Shields stress Φ(τ∗ − τ∗c), for which various empirical relationships have
been proposed in the literature. Under the latter conditions we may then write:

Q = (Qs, Qn) = (1, 0)Φ(τ∗ − τ∗c). (2.9)

Below we will employ for Φ the classical Meyer-Peter & Müller (1948) form:

Φ = 8(τ∗ − τ∗c)
3/2. (2.10)

Moreover, in order to check that the results of the present analysis are not significantly
dependent on the particular form chosen for the closure relationship for Φ , we have
repeated our calculations replacing (2.10) by Parker’s (1990) relationship:

φ = 0.00218τ 3/2
∗ G(ξ ), ξ = τ∗/τ∗rif, τ∗rif = 0.0386, (2.11)

where:

G = 5474(1 − 0.853/ξ )4.5, ξ � 1.59, (2.12a)

G = exp[14.2(ξ − 1) − 9.28(ξ − 1)2], 1 � ξ � 1.59, (2.12b)

G = ξ 14.2, ξ � 1, (2.12c)

which is known to perform well for gravel bed rivers.
However, a crucial feature of bars is the sloping character of their bed. When

attempting to extend (2.9) to configurations characterized by non-negligible values
of the local bed slope, we have to account for the physical fact that, under such
conditions, sediment motion tends to deviate from the local direction of the mean
flow, to accomplish the gravitational tendency of particles to move preferentially
downhill. Such an effect has been investigated thoroughly in the last two decades.
Assuming the bed to be ‘weakly’ sloping, an assumption appropriate to describe bars,
except perhaps close to their ‘sharp’ diagonal fronts, we may write:

Q = (Qs, Qn) = (cos γ, sin γ )Φ. (2.13)
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Here, γ is the angle that the direction of the bedload flux forms with the longitudinal
direction. In the absence of gravitational effects, the average particle motion would be
aligned with the average bottom stress, hence sin γ would take the value V/

√
U 2 + V 2.

A weak lateral local slope of the bed (∂η∗/∂n∗) (with η∗ ≡ H ∗ − D∗) modifies the
latter value, adding a linear contribution to sin γ , which can be estimated on the
basis of semi-empirical models of particle saltation on weakly sloping beds (Sekine &
Parker 1992) or experimental observations (Talmon, Struiksma & Van Mierlo 1995).
The outcome of such contributions is the following relationship:

sin γ =
V√

U 2 + V 2
− r

β
√

τ∗

(
F 2

o H − D
)

,n
, (2.14)

with r the empirical parameter ranging about 0.5–0.6.
The differential system (2.3a)–(2.3d) with the closure relationships (2.7)–(2.10) must

be solved subject to boundary conditions of vanishing fluid and sediment fluxes
through the side walls, hence:

V = Qn = 0 (n = ±1), (2.15)

as well as to initial conditions to be discussed fully in the next sections.

3. The nature of bar instability
Let us now examine the stability of the basic state consisting of a uniform flow

over a plane sloping bed, such that:

(U, V, H, D) = (1, 0, Ho, 1). (3.1)

We then perturb such a basic state by linear infinitesimal perturbations (u, v, h, d),
substitute the perturbed state into the governing differential system with associated
closure relationships and boundary conditions and linearize the problem which can
eventually be reduced to the following form:

(
∂

∂t
L − NM

)
v = 0, (3.2a)

v =
∂2

∂n2

(
∂

∂s
+ a1

)
v = 0 (n = ±1), (3.2b)

having denoted by L, N and M the following operators:

L = − ∂3

∂s3
−

[
F 2

o (a2 − a1 − a3) + a3

1 − F 2
o

]
∂2

∂s2
−

[
1

1 − F 2
o

]
∂3

∂s∂n2

−
[
a3

F 2
o (a2 − a1)

1 − F 2
o

]
∂

∂s
−

[
a1

1 − F 2
o

]
∂2

∂n2
, (3.3a)

N =
(a5 − a4)εΦo

1 − F 2
o

, (3.3b)
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M = − ∂4

∂s4
+

[
−a3 −

a6

(
1 − F 2

o

)
(a5 − a4)

∂2

∂n2

]
∂3

∂s3
+

{
a6

[
F 2

o (−a2 + a1 + a3) − a3

]
+ 1 − a5

(a5 − a4)

}

× ∂4

∂s2∂n2
+

[
a6F

2
o (−a2 + a1)a3 + a1(1 − a5) + a2(a4 − 1)

(a5 − a4)
− a6

(a5 − a4)

∂2

∂n2

]

× ∂3

∂s∂n2
−

[
a1a6

(a5 − a4)

]
∂4

∂n4
, (3.3c)

where ai (i = 1–6) are the following coefficients:

a1 = 2βCo, a2 = βCo

(
1

Co

∂C

∂D
− 1

)
, a3 = βCo, (3.4a)

a4 = 2
τ∗o

Φo

∂Φ

∂τ∗
, a5 =

1

Co

∂C

∂D

τ∗o

Φo

∂Φ

∂τ∗
, a6 =

r

β
√

τ∗
, (3.4b)

with Co, τ∗o and Φo, respectively, denoting the friction coefficient, the Shields stress
and the dimensionless bedload transport rate of the undisturbed uniform flow.

The convective or absolute nature of the instability can be ascertained by
investigating the impulse response of the system. In other words, we seek the solution
of the initial-value problem posed by the differential system (3.2) with initial condition:

v = δ(t)δ(s)

∞∑
m=0

{
gm cos

[
1
2
π(2m + 1)n

]
+ hm sin(2πmn)

}
, (3.5)

where we have denoted by δ a Dirac distribution. Note that each of the lateral
modes of the impulse function (3.5) contains Fourier components of all temporal
frequencies and longitudinal wavenumbers. In order to analyse the impulse response of
the system to (3.5) in a linear context, it is then necessary to determine the structure
of the response of the system to each Fourier mode defined as follows:

v = gm cos
(

1
2
πmn

)
exp[i(λs − ωt)] (m odd), (3.6a)

v = hm sin (πmn) exp[i(λs − ωt)] (m even), (3.6b)

where λ and ω are complex wavenumber and complex frequency, respectively.
Substituting from (3.6) into the differential problem (3.2), we readily derive the

following dispersion relation:

Dm(ω, λ; β, τ∗, ds) = ω − N
−λ4 + in3λ

3 + n2λ
2 + in1λ + n0

λ3 + id2λ2 + d1λ + id0

= 0. (3.7)

The coefficients ni (i = 0–3), di (i = 0–2) are obtained from the operators (3.3) replacing
∂/∂s by (iλ) and ∂j/∂nj by (−1)e(j )(πm/2)j with e(j ) equal to (j + 1)/2 (or j/2) if j
is odd (or even) for odd modes, (or equal to (j − 1)/2 (or j/2) if j is odd (or even)
for even modes).

The response to the impulse function (3.5) takes the form of a wave packet in the
(s, t)-plane. Using the method of steepest descent, we can readily show that, along
each ray s/t, the asymptotic behaviour of the response for large times is dominated
by the complex wavenumber λ∗ such that the associated group velocity is real and
satisfies the relationship: [

∂ω

∂λ

]
λ∗

=
s

t
. (3.8)
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The temporal growth rate along the ray s/t is then the growth rate associated with the
wavenumber λ∗, namely (ωi(λ

∗) − (s/t)λ∗
i ). Linear instability occurs if the maximum

attainable value over all rays of such growth rate is positive and it is readily shown
that the maximum growth rate is experienced by the ray s/t = [∂ωr/∂λ]λmax

where
λmax is the real wavenumber at which the temporal growth rate ωi of the generic
Fourier mode reaches a maximum.

In order to distinguish between convective and absolute instability we must examine
the long-term behaviour of the impulse response along the ray s/t = 0 at a fixed spatial
location. From (3.8), it follows that such behaviour is determined by the growth rate
of the complex wavenumber λo characterized by vanishing group velocity, i.e. at the
branch point of the dispersion relation where:[

∂ω

∂λ

]
λo

= 0. (3.9)

Absolute instability requires that ωi(λo) is positive. However, as pointed out by
Briggs (1964) and Bers (1975) (see also the review of Huerre & Monkewitz 1990), the
latter condition is not sufficient to ensure the absolute character of the instability;
the behaviour of the spatial branches of the dispersion relation as we move from the
branch point must also be monitored. More precisely, in order for the instability to
be absolute, at least two of the spatial branches emerging from the branching point
must lie on distinct half λ-planes as ωi attains large values.

We have applied such a criterion to our stability problem which has the advantage
of allowing for the derivation of the dispersion relation in closed form. Hence, we
can readily determine the location of the branch-point singularities λo as solutions of
a complex polynomial of sixth order. Such solutions have been obtained numerically
and turned out to be four purely imaginary, and two complex for βm > βcm, where
m is the lateral mode considered. Note that for βm < βcm, any initial instability with
lateral Fourier mode m decays, and so in this case the location of the branch-point
singularities is irrelevant. Out of the six solutions, only one purely imaginary (λ1)
and the two complex solutions (λ2 and −λ̄2) are possible candidates for absolute
instability, being characterized by a positive value of the growth rate. Such behaviour
is displayed for any lateral mode and for any value of the controlling dimensionless
parameters. Figure 3 shows the dependence of λo and of ω(λo) on β for the three
solutions of the polynomial of sixth order characterized by positive value of the
growth rate, and for the first three lateral modes, given values of Shields stress and
relative roughness.

Figures 4 and 5 show how the spatial branches of the dispersion relation behave
as we move from every branch-point singularity λo characterized by ωi > 0, with ωi

increasing starting from ωi(λo). It turns out that the two spatial branches emerging
from all the branching points invariably lie on the same half λ-plane as ωi attains
sufficiently large values. Hence, at a linear level instability is invariably convective.

Finally, we have checked that our conclusion about the convective nature of bar
instability does not depend on the closure relationship for bedload transport. As
mentioned in § 2, we have employed Parker’s (1990) relationship (equation (2.11)).

The solutions of the complex polynomial of sixth order turn out to be four complex
and two purely imaginary for βm > βcm. Out of the six solutions, only two complex
solutions are now possible candidates for absolute instability being characterized by
positive value of the growth rate. However, as found above, the two spatial branches of
the dispersion relation emerging from the two complex branching points characterized
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Figure 3. Locus of the branch point (λo,ω(λo)) as β varies, for τ∗ = 0.09, ds = 0.04, and lateral
mode m= 1 (—), m= 2 (- - -), m= 3 (. . .); (a) and (b) are relative to the two complex solutions,
(c) and (d) are relative to the only purely imaginary solution characterized by positive value
of the growth rate.

by positive ωi , invariably lie on the same half λ-plane as ωi attains sufficiently large
values. Hence, our conclusion ‘instability is invariably convective’ does not seem to
depend on the closure relationship for bedload transport used.

In the next section we perform numerical solutions of the fully nonlinear problem
to confirm the present analytical findings and to show that the above convective
behaviour persists as perturbations evolve into the finite-amplitude regime.

4. Numerical simulations
To perform numerical simulations on the fully nonlinear equations governing the

morphodynamical problem, a two-dimensional finite-difference model was built.
We semi-coupled the Exner equation, (2.3d), with the shallow-water equations,

(2.3a–c), and used, for the progress in time, an explicit method for the former and
an alternating direction implicit (ADI) method for the latter. The ADI method was
chosen to alleviate the problem of a limiting time step for stability reasons, even
though, in practice, accuracy requirements will often limit the time step to only
a few times the limiting time step for an explicit method. We also added to the
equations (2.3a, b) a diffusive term, namely ν∇2(U, V ) with ν = 0.01, that has merely
numerical justification, aimed to improve the stability of the calculation. Moreover,
an efficient choice of the location of the variables U, V, H and Zf (= F 2

o H − D) on
a staggered computational grid was used, as shown in figure 6.
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Figure 4. The behaviour of the four spatial branches in the λ-plane for the first lateral mode,
β =20, τ∗ = 0.09, ds =0.04, and (a) ωi = ωi(λ2) = ωi(−λ̄2) � 0.0039, (b) ωi = 0.005, (c) ωi = 0.01.
The two branch-point singularities are marked by a circle. The arrows on the spatial branches
indicate the direction of increasing ωr .

The integrations were performed in two distinct steps. In the first step, we computed
the new velocity component U and the new water levels H at time step k + 1/2 from
information available at time step k and time step k − 1/2 using the longitudinal
component of the momentum equation and the continuity equation. In the second
step, the new velocity component V and the new water levels H at time step k + 1
were computed from information available at time step k +1/2 and time step k using
the transversal component of the momentum equation and the continuity equation.
Note that U was computed only at half-integer time steps, whereas V was computed
at integer time steps, and the water level H was computed every half time step.
Moreover, we updated the bed topography Zf every half time step.
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Figure 5. The behaviour of the two spatial branches that merge in the purely imaginary
branch-point singularity, in the λ-plane for the first lateral mode, β = 20, τ∗ = 0.09, ds = 0.04,
and (a) ωi = ωi(λ1) � 0.311, (b) ωi = 0.350, (c) ωi = 0.500. The branch-point singularity is
marked by a circle. The arrows on the spatial branches indicate the direction of increasing ωr .

The following boundary conditions were imposed: along the rigid boundaries we
set the velocity component V and the lateral sediment flux Qn equal to zero, the slip
condition (no stress) on the velocity U and the water level H horizontal; along the
open inflow boundary we set a given water discharge, the longitudinal derivative of
V and H to vanish, and constant flow depth, i.e. sediment discharge in equilibrium
with the imposed water discharge; finally, along the open outflow boundary we simply
set the longitudinal derivative of U, V, H and (Qs ,Qn) to vanish.

We performed numerical simulations with two different initial conditions: in the
first case, we started from a localized spatial perturbation of bed topography, namely
a bump with an emisymmetric lateral profile and a sinusoidal longitudinal structure;
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Figure 6. Location of U, V, H and Zf on the difference computational grid.
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Figure 7. Bed topography at the initial time and at t = 500 (β = 15, τ∗ = 0.09, ds = 0.04).
The initial localized bump gives rise to wave groups that grow and migrate downstream with
time.

in the second case, we started from a randomly distributed perturbation of bed
topography.

Both the initial conditions gave rise to the growth of wave groups which migrated
downstream leaving the flow domain unperturbed, for every aspect ratio of the
channel, as shown in figures 7 and 8 (where the darker zone corresponds to deposition
and the lighter zone corresponds to erosion). Note that in these figures the lateral
scale is much smaller than the longitudinal scale; a three-dimensional view of the
actual bed topography is shown in figure 9.

Hence, instability appears to be invariably convective also at a nonlinear level.

5. Discussion
The above results suggest that it is necessary to revisit the interpretation of

experimental observations concerning the formation and development of free bars
in the laboratory. In fact, the convective nature of the instability mechanism implies
that the bars actually observed in the laboratory arise from some forcing effect, e.g.
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Figure 8. Bed topography at t = 500, 1000 and 1500 generated by an initial infinitesimal
randomly distributed perturbation (β = 12, τ∗ = 0.09, ds = 0.04).

(a)
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(c)

Figure 9. Tridimensional view of the bed topography in the random case, close to s = 400,
at (a) t = 500, (b) 1000 and (c) 1500.

a persistent, however small, perturbation of flow and bed topography at the initial
cross-section of the channel. Various questions then arise.

Does the forced development of bars eventually lead to the establishment of
an equilibrium amplitude of the kind discussed by Colombini et al. (1987)? Is such an
equilibrium amplitude dependent on the amplitude of the forced perturbations at
the initial cross-section? Does the spatial development require a sufficient length of the
laboratory channel? Moreover, how does the selection of the bar mode depend on
the spatial rather than temporal character of bar development?

Answering these questions may be pursued through a series of suitable numerical
experiments.

Our first numerical experiment, denoted ‘1Freq’, was performed by forcing a
persistent perturbation of bottom elevation at the initial cross-section of the flow
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Figure 10. Bed topography generated by run ‘1Freq’, performed by forcing a harmonic
oscillation of bottom elevation at the initial cross-section. (a) t = 2800, (b) 3700 and (c) 4200
(τ∗ = 0.057, ds = 0.053, β = 8 and βc = 5.6).
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Figure 11. Distribution of bottom elevation along the right bank of the channel at different
times in the run ‘1Freq’.

domain. The perturbation had a lateral distribution corresponding to the first alternate
bar mode and oscillated periodically in time with a frequency chosen such that the
corresponding wavenumber predicted by the dispersion relationship was characterized
by the maximum temporal growth rate. The dimensionless amplitude of the initial
perturbation (scaled by the average flow depth) was 10−3. Figure 10 shows the results
of the computation in the form of plots of bed topography corresponding to different
times. The formation of a wave group is observed, which migrates downstream and
undergoes spatial and temporal amplification keeping its tail in the upstream part of
the domain.

Figure 11 shows the distribution of bottom elevation along the right bank in the
same numerical experiment: note that nonlinear saturation occurs, hence the spatial–
temporal amplification leads to the establishment of an equilibrium amplitude.

The equilibrium amplitude is found to be independent of the amplitude of the
initial perturbation. This is shown in figure 12 where two different responses to
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Figure 12. Comparison between the distributions of bottom elevation along the right bank
of the channel in two experiments characterized by initial perturbations with equal frequency
(the same as in run ‘1Freq’) and different amplitudes. —–, dimensionless amplitude = 0.001;
− − −, dimensionless amplitude = 0.002 (τ∗ = 0.057, ds = 0.053, β = 8 and βc = 5.6).

initial excitations identical except for their amplitudes (one twice the other) are
reported. Note that the smaller the initial amplitude, the farther the cross-section
where equilibrium is achieved.

We then attempted to ascertain whether a preferred mode selected by the spatial–
temporal amplification of the initial perturbation could be detected. To this aim,
we have forced an initial perturbation with the same lateral structure as before, but
characterized by a temporal oscillation arising from the superposition of 20 harmonics
of equal amplitudes and frequencies obtained from the dispersion relationship (run
denoted ‘20Freq’) having chosen 20 equally spaced unstable wavenumbers for the
given value of the aspect ratio β (see figure 13). A more appropriate procedure would
have been to impose a random oscillation; however, this leads to numerical instabilities
due to the presence of frequencies that are too large in the forcing. We then repeated
our calculation by halving the number of components of the forcing oscillation (run
denoted ‘10Freq’). The harmonic content of the initial perturbation is not found to
affect significantly either the equilibrium amplitude or the equilibrium wavenumber
and wavespeed asymptotically reached by the perturbation. Figure 14 shows the
temporal development of the bar wavenumber observed at different cross-sections
during the run ‘20Freq’. Note that in the initial phase of the development process,
the wavenumber most amplified exceeds one, whereas, approaching equilibrium the
wavenumber evolves towards an asymptotic value of about 0.4. Such a value is
slightly smaller than that corresponding to the maximum temporal growth rate of
linear theory for the given aspect ratio of the channel. Similarly, figure 15 shows the
temporal development of the bar celerity observed at different cross-sections during
the run ‘20Freq’. Note that nonlinearity leads to a sharp decrease of the bar wavespeed
in time. The latter results confirm the laboratory observations of Seminara & Tubino
(1989b) and the calculations of Defina (2003).

6. Concluding remarks
The analysis developed in the present paper shows that the nature of bar instability

is convective. Hence, as demonstrated through the numerical experiments discussed
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Figure 13. Sketch showing the 20 unstable wavenumbers such that the associated frequencies
determined from the dispersion relationship contributed to the harmonic content of the initial
perturbation of run ‘20Freq’. Note that the circle indicates the most unstable wavenumber
for the given aspect ratio β according to the temporal linear stability theory, while the cross
indicates the most unstable wavenumber at the marginal conditions. (τ∗ = 0.057, ds = 0.053,
β = 8 and βc = 5.6).
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Figure 14. Temporal development of the bar wavenumber observed at different
cross-sections in the run ‘20Freq’ (τ∗ = 0.057, ds = 0.053, β = 8 and βc = 5.6).

in the previous section, the spatial–temporal development of bars arises from the
persistent forcing of an initial perturbation. The structure of the finite-amplitude
bars emerging from the nonlinear development exhibits a periodic pattern and an
equilibrium amplitude, independent of the amplitude and harmonic content of the
initial forcing. However, both the bar wavenumber and the bar speed do exhibit a
temporal evolution whereby the perturbations lengthen and slow down as bar growth
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Figure 15. Temporal development of the bar celerity observed at different cross-sections in
the run ‘20Freq’ (τ∗ = 0.057, ds = 0.053, β = 8 and βc = 5.6).

moves from the linear into the nonlinear regime. Both such findings are in general
agreement with the laboratory observations of Fujita & Muramoto (1985) (see also
the analysis of Seminara & Tubino 1989b). However, the distance from the initial
cross-section where equilibrium is achieved does depend on the intensity of the initial
perturbation.

The latter finding raises important issues relating to the interpretation of laboratory
observations of various authors (see Colombini et al. 1987, for references on
experimental works). In fact, the question arises of whether the length of the
experimental facility in the various experiments on bar formation was large enough
to allow for the full development of perturbations. Indeed, the scatter of values of
bar wavelength, bar speed and bar amplitude reported by different authors may be
due partly to the exact location and time where the above features were observed. A
detailed revisitation of such experimental works is then called for.

Needless to say, when moving from the laboratory to the field, the picture is
considerably more complicated. The main additional feature introduced by the
geometry of river channels is curvature. As mentioned in § 1, a large body of
knowledge has been developed in the last few decades about the hydrodynamic and
morphodynamic effects of curvature in meandering rivers and it is well established that
forced steady bars arise from the centrifugal and topographic secondary flows driven
by curvature. The interaction of such forced features with the free perturbations
arising from bar instability is known to give rise to a tendency for free bars to
be suppressed when channel sinuosity is large enough (Kinoshita & Miwam 1974;
Tubino & Seminara 1990). It is unlikely that the latter picture is significantly altered
by the convective nature of free bars, though some strongly nonlinear calculations of
the spatial–temporal development of free bars in sinuous channels would certainly be
appropriate.

A second important feature brought up in the field is the presence of transport
in suspension, when dealing with sandy rivers. Again, on purely intuitive grounds,
we do not feel that the presence of a significant portion of sediments transported in
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suspension should alter our conclusions about the convective nature of bar instability.
However, such expectation can only be confirmed by a suitable extension of the
present work to cover the effect of suspended load in the light of recent contributions
(Repetto et al. 1999).

Further complicating features of the real world, such as grain sorting (Seminara
1995), unsteadiness (Tubino 1991) and geometrical constraints (Zolezzi & Seminara
2001) may also require additional attention in the light of the present results.
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Research and by the University of Genova (COFIN 2001) ‘Morphodynamics of fluvial
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